Annals of Clinical Case Reports

9

Primary Signet-Ring Cell and Histiocytoid Carcinoma in the Axilla: A Case Report with Clinicopathology, Immunohistology, and Genetic Analysis

Kim Y¹, Choi SJ², Kim L², Lim SM³, Ki SH⁴, Lee J⁵, Lee MH⁶ and Ha H⁶*

¹Department of Internal Medicine, Inha University Hospital, Incheon, Republic of Korea

²Department of Pathology, Inha University Hospital, Inha University college of Medicine, Republic of Korea

³Department of General Surgery, Inha University Hospital, Inha University college of Medicine, Republic of Korea

⁴Department of Plastic Surgery, Inha University Hospital, Inha University college of Medicine, Republic of Korea

⁵Department of Radiation Oncology, Inha University Hospital, Inha University college of Medicine, Republic of Korea

⁶Department of Internal Medicine, Inha University Hospital, Inha University College of Medicine, Incheon, Republic of Korea

Abstract

Signet-Ring Cell/Histiocytoid Carcinoma (SRCHC) is a very rare skin adnexal cancer that has been to occur mainly in the eyelid and axilla. SRCHC is characterized by composed of signet-ring cells and histiocytoid epithelial cells pathologically. We report a 55-year-old man who was diagnosed with SRCHC. A 55-year-old Korean male visited the hospital with a growing axillary mass that had appeared two years ago. Computerized tomography and positron-emission tomography showed a skin-involved mass and regional lymph node in the axilla. Signet ring cell and histiocytoid epithelial cell were found in his biopsy tissue. Immunohistology examination showed a decrease in E-cadherin, estrogen receptor/progesterone receptor negative, and androgen receptor positive. Based on the above findings, SRCHC was diagnosed. Genetic analysis using next-generation sequencing revealed mutations in PIK3CA (c263G>A, pR88Q), CDH1 frameshift (c1570_1574 del CGGAT, pR524fs), and TP53 (c329G>T, pR110L). The patient underwent surgical resection and adjuvant radiotherapy. Given the limited number of known cases, further clinicopathological and genetic analyses are needed.

Keywords: Signet-ring cell and histiocytoid carcinoma; Axilla; Clinicopathology; Next generation sequencing

Introduction

Signet-Ring Cell/Histiocytoid Carcinoma (SRCHC) is a rare tumor newly classified in the 5th edition of the World Health Organization's skin tumor classification in 2023 [1]. It is characterized by the presence of signet-ring cells and histiocytoid epithelial cells in the dermis, subcutaneous tissue, and collagen bundles of the epidermis. SRCHC typically manifests on the eyelid and less commonly in the axilla [2-4].

To the best of our knowledge, there are only limited case reports and case series documenting SRCHC in the axilla. In this report, we aim to present a case of SRCHC originating in the axilla, providing detailed histopathological findings and results from next-generation sequencing.

Case Presentation

A 55-year-old Korean male presented to Inha University Hospital with a palpable mass in the left axilla that had its onset two years prior. Initially measuring approximately 1 cm in size, akin to the dimensions of a common bean, the mass exhibited a steady and worrisome growth pattern, ultimately reaching a diameter of 9.5 cm (Figure 1a). Concurrently, the patient experienced progressively worsening pain localized around the axillary mass, prompting his visit to our facility for a thorough evaluation. The patient presented with no known underlying medical conditions and was not currently undergoing any medical treatments. The sole noteworthy familial medical history pertained to the patient's sister, who had a previous diagnosis of breast cancer.

OPEN ACCESS

*Correspondence:

Hyerim Ha, Department of Internal Medicine, Inha University Hospital, Inha University College of Medicine, 27 Inhang-ro, Jung-gu, Incheon, Republic of Korea; Tel: +82-32-890-7251; Fax: +82-32-890-2585 Received Date: 06 Nov 2023 Accepted Date: 24 Nov 2023 Published Date: 28 Nov 2023

Citation:

Kim Y, Choi SJ, Kim L, Lim SM, Ki SH, Lee J, et al. Primary Signet-Ring Cell and Histiocytoid Carcinoma in the Axilla: A Case Report with Clinicopathology, Immunohistology, and Genetic Analysis. Ann Clin Case Rep. 2023; 8: 2526. ISSN: 2474-1655.

Copyright © 2023 Ha H. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Figure 1: (a) Clinical appearance of the patient's mass located in the left axilla. The advanced nodular lesion was reddish in color and circumscribed. (b) Chest CT shows a skin mass measuring approximately 6.8 cm in the left axillary region, enlarging the adjacent lymph nodes. (c) PET/CT findings: Abnormal hypermetabolic lesion in left axillary LN level I and II.

Figure 2: Histopathological findings of signet-ring cell/histiocytoid carcinoma of the patient.

(a) Diffuse infiltration of malignant epithelioid cells with extension to the subcutaneous.

(b) Histiocytoid neoplastic cells contain a sizeable hyperchromatic nucleus and eosinophilic granular cytoplasm. In addition, signet ring cells with mild atypia are also identified.

Computed Tomography (CT) of the chest revealed skin mass and adjacent lymph node enlargement in the axilla (Figure 1b). A positron-emission tomography/CT scan showed an abnormal hypermetabolic lesion in the left axillary lymph node levels I and II (Figure 1c). A skin biopsy was performed for pathologic diagnosis.

Histopathologic examination revealed diffuse infiltration of malignant epithelioid cells with extension to the subcutaneous tissue (Figure 2a). Furthermore, the signet ring cells with mild nuclear atypia were identified (Figure 2b).

An immunohistochemical study revealed a loss of E-cadherin. The tumor cells also showed diffuse immunohistochemical expression of Cytokeratin 7 (CK7), Androgen Receptor (AR), and GATA binding protein 3 (GATA3) (Figure 3a-3c) but negative for Progesterone Receptor (PR), Estrogen Receptor (ER), Human Melanoma Black 45 (HMB45), Melan A, CD34, Vimentin and Her-2 (c-erbB2) (Figure 3d).

Next-generation sequencing was analyzed using Archer Fusion

(a) Cytokeratin 7 is diffusely expressed. (original magnification x200)
(b) Androgen receptor is diffusely expressed. (original magnification x200)
(c) GATA3 is diffusely expressed. (original magnification x200)
(d) Her2 is not expressed in the neoplastic cells. (original magnification x200)

Plex Lung SK0133 v1.0 Assay Targets. Gene mutations were found in PICK3CA (c263G>A, pR88Q), CDH1 frameshift (c1570_1574 del CGGAT, pR524fs), and TP53 (c329G>T, pR110L).

We performed wide excision, axillary lymph node dissection, and reconstruction with ipsilateral latissimus dorsi myocutaneous flap. Thirty-six axillary lymph nodes were resected, twenty-six of which showed tumor metastasis. After surgical treatment, he received postoperative radiation therapy and has been following up for 6 months with no evidence of disease state.

Discussion

Signet-Ring Cell/Histiocytoid Carcinoma (SRCHC) in the axillary region is exceptionally rare, resulting in limited available data. This unique malignancy predominantly afflicts males and is characterized by distinctive morphological features, typically presenting as circumscribed plaques or nodules. Its clinical behavior can range from indolent to aggressive, with documented cases occasionally demonstrating lymph node metastasis [2-4,8]. The reported cases of SRCHC in the axilla are summarized in Table 1, 2 [3-16]. All but one case involved male patients, and among the total of 16 cases, which includes our own, comprising both male and female individuals, regional lymph node metastases were observed.

Due to the histopathological similarity between SRCHC and lobular carcinoma of the breast, SRCHC is sometimes misdiagnosed as a metastatic lesion of breast cancer. In this case, our initial assessment leaned towards the possibility of skin and lymph node metastasis of breast cancer, leading us to diligently search for the primary breast mass. However, no abnormal findings were detected upon physical examination and magnetic resonance imaging of the breast. While SRCHC typically presents with a characteristic nodular lesion, its clinical evaluation can be challenging, underscoring the critical importance of pathological examination in achieving an accurate diagnosis [3,4,7,17].

Histopathologically, SRCHC, as the name implies, is characterized by histiocytic cells containing a large hyperchromatic nucleus, slightly eosinophilic granular cytoplasm, and signet ring cells with an

Table 1. Summar	of all published cases of axillary signet-ring cell/histiocytoid c	arcinoma
Table 1. Summar	of all published cases of axillary signet-fing cell/histocytold of	arcinoma.

Case No.	Country	Age	Gender	Side	Lymph node metastasis	Distant metastasis	Other	Treatment	Outcome	Reference
					motuotuoto	motaotaoto	neoplaoin	Local excision +		
1	Japan	85	Male	Left	Present	Absent	Absent	radiotherapy +	SD	Goto et al. [3]
								chemotherapy		
					_			Local excision +		
2	Japan	81	Male	Left	Present	Present (skin)	Absent	radiotherapy +	PD	Goto et al. [3]
								cnemotherapy		
3	Japan	81	Male	Right	Absent	Absent	Absent	radiotherapy	NED	Goto et al. [3]
4	Japan	72	Male	Right	Absent	Absent	Absent	Local excision	NED	Goto et al. [3]
Б	lanan	53	Malo	Pight	Absont	Present (skin,	Abcont	Local excision +	DOD	Coto ot al [2]
	Japan		Male	Right	Absent	bones, pleural)	Absent	radiotherapy	DOD	0010 et al. [0]
6	Japan	88	Male	Left	Present	Present (skin)	Absent	Local excision	PD	Goto et al. [3]
7	Japan	81	Male	Left	Present	Absent	Absent	Local excision + radiotherapy	NED	Goto et al. [3]
						Present (bones,		Radiotherapy +		
8	Japan	64	Male	Left	Present	peritoneum,	Absent	chemotherapy	DOD	Goto et al. [3]
						adrenal glands)				
9	Japan	80	Male	Left	Present	Absent	Absent	radiotherapy	NED	Goto et al. [3]
10	Janan	74	Male	Right	Present	Present (bones)	Absent	Chemotherapy	PD	Goto et al. [3]
11	lanan	77	Male	Left	Present	Absent	Absent		NED	Goto et al. [3]
	oupun		maio	Lon	-	7,600111	71000111			
12	Japan	85	Male	Left	Present	Absent	Absent	Chemotherapy	NED	Ito et al. [4]
13	Canada	71	Male	Right	Present	Present (bones)	Present (prostate)	Local excision	DOD	Berdugo et al. [5]
14	USA	58	Male	Left	Absent	Absent	Absent	Radiotherapy	ND	Philips et al. [6]
15	USA	63	Male	Left	Present	Absent	Present (non-Hodgkin	Local excision + radiotherapy	NED	Droubi et al. [7]
16	Japan	61	Male	Right	Present	Absent	Absent	Local excision	NED	Ishida et al. [8]
	Capan		maio	. ugin		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	7.000111	Local excision +		ionida ot an [o]
17	Japan	59	Male	Right	Absent	Absent	Absent	radiotherapy +	NED	Miyake et
								targeted therapy		al. [9]
								Local excision +		Misago ot al
18	Japan	55	Male	Left	Present	Absent	Absent	radiotherapy +	NED	[10]
								targeted therapy		[10]
19	India	55	Male	Right	Present	Absent	Absent	therapy	ND	Pai et al. [11]
20	Austria	71	Male	Right	Absent	Absent	Absent	Local excision	NED	Zelger et al. [12]
21	Japan	62	Male	Right	Absent	Absent	Absent	Chemotherapy	DUL	Kiyohara et al.
							D (Local excision +		[10]
22	Japan	74	Male	Right	Present	Absent	(prostate)	radiotherapy +	DUL	Kuno et al. [14]
23	Japan	59	Male	Left	Absent	Absent	Absent	Local excision	NED	Kuno et al. [15]
24	Japan	68	Female	Right	Absent	Absent	Absent	Local excision	ND	Kuno et al. [15]
				····g·it				Local excision +		Cameselle et
25	Spain	42	Male	Left	Absent	Absent	Absent	radiotherapy	NED	al. [16]
Present	Korea	55	Male	Left	Present	Absent	Absent	Radiotherapy	NED	

Abbreviation: SD: Stable Disease; PD: Progressive Disease; NED: No Evidence of Disease; DOD: Died of Disease; DUL: Died of Unrelated Cause; ND: Not Described

eccentric, slightly abnormal nucleus replaced by cytoplasmic vacuoles that typically contain mucin. These histopathological features can pose challenges in distinguishing SRCHC from other metastatic cancers with signet-ring cells or histiocytoid cells, necessitating a meticulous approach to differentiation [7,10,18].

Immunohistochemically, the tumor cells exhibited positivity for CK 7, cytokeratin 8 (CAM 5.2), MOC-31 (Epi-CAM), AR, and GATA3, while they tested negative for ER, PR, and Her 2. Notably, the absence of ER and PR expression is a distinguishing characteristic that sets SRCHC apart from other metastatic breast cancers, as ER and PR are often positive in male breast cancer [19]. Additionally, our case, like others with SRCHC, displayed a loss of E-cadherin, a pivotal regulator of tissue homeostasis governing multiple cellular functions and development [20]. Hence, an immunohistological approach is imperative for an accurate diagnosis.

Table 3 represents four cases, including our own, all of which underwent next-generation sequencing analysis. The analysis revealed PIK3CA mutations in all four cases. In our case, we identified PIK3CA mutations, TP53 mutations, and CDH1 frameshift mutations. Notably, prior to our case, only one case in the table exhibited a TP53 mutation. Furthermore, when comparing our case to another case with a PIK3CA mutation characterized as E545K, our case exhibited a distinct PIK3CA mutation, specifically R88Q. Mutations in the p110 α subunit of PI3K, called PIK3CA, are found in a variety of cancers and play a role in promoting carcinoma formation and cancer progression [21]. The TP53 mutation is localized in the region encoding the DNA binding domain of p53. p53 plays an essential role in causing senescence, which may be an important mechanism for the

Case No.	Age	Gender	Histopathological findings	Immunohistochemical findings	Reference
1	85	Male	Signet-ring cells and histiocytoid cells	Cutokeratin 7 (+ 11/11)	Goto et al. [3]*
2	81	Male	Signet-ring cells and histiocytoid cells Tubular pattern	Cytokeratin 19 (+, 5/5) Cytokeratin 20 (-, 0/4)	Goto et al. [3]
3	81	Male	Signet-ring cells and histiocytoid cells	P63 (-, 0/11)	Goto et al. [3]
4	72	Male	Signet-ring cells and histiocytoid cells	MUC1 (+, 10/10)	Goto et al. [3]
5	53	Male	Signet-ring cells and histiocytoid cells	MUC5AC (+, 11/11)	Goto et al. [3]
6	88	Male	Signet-ring cells and histiocytoid cells	MUC6 (+-, 4/11) BerEP4 (+ 8/8)	Goto et al. [3]
7	81	Male	Signet-ring cells and histiocytoid cells	E-cadherin (+-, 8/11)	Goto et al. [3]
8	64	Male	Signet-ring cells and histiocytoid cells	GCDFP15 (+, 11/11) Mammoolobin (+-, 9/11)	Goto et al. [3]
9	80	Male	Signet-ring cells and histiocytoid cells	GATA3 (+, 10/11)	Goto et al. [3]
10	74	Male	Signet-ring cells and histiocytoid cells	Progesterone receptor (-, 0/11)	Goto et al. [3]
11	77	Male	Signet-ring cells and histiocytoid cells	Androgen receptor (+, 11/11)	Goto et al. [3]
12	85	Male	Single cells cord histiocytoid cells	Cytoeratin 7(+) Cytokeratin 20(-) GCDFP-15(a few+)	Ito et al. [4]
13	71	Male	Signet-ring cells and histiocytoid cells	Cytokeratin 7(+) Cytokeratin 20(-) $GATA3 (+) GCDFP-15$ (+) $AP(+) E_{-2}$ desrin(+) $EP(-) PP(-) PP(-)$	Berdugo et al. [5]
14	58	Male	Signet-ring cells and histiocytoid cells	Cytokeratin 7(+) Cytokeratin 19 (+) GATA3 (+) GCDFP-15 (+) Cytokeratin 20(-) AR(+) E-cadherin(+) ER(-) PR(-)	Philips et al. [6]
15	63	Male	Individual and small cords of tumor cells signet-ring cells	Cytokeratin 7(+) GCDFP-15 (+) ER(-) PR(-)	Droubi et al. [7]
16	61	Male	Single-file pattern histiocytoid cells signet-ring cells	Cytokeratin 7(+) Keratin 20(-) GCDFP-15 (+) ER(-) PR(-)	Ishida et al. [8]
17	59	Male	Trabecular pattern histiocytoid cells	Cytokeratin 7(+) Cytokeratin 20(-) GCDFP-15 (+) ER(-) PR(-)	Miyake et al. [9]
18	55	Male	Single-file pattern histiocytoid cells pagetoid spread(+)	Cytokeratin 7(+) GCDFP-15 (+) ER(-) PR(-)	Misago et al. [10]
19	55	Male	Signet-ring cells and histiocytoid cells	ND	Pai et al. [11]
20	71	Male	Reminiscent of invasive lobular carcinoma	Cytokeratin 7(+) Cytokeratin 20(+) GCDFP-15 (-), ER(+) PR(+)	Zelger et al. [12]
21	62	Male	Trabecular pattern signet-ring cells	Cytokeratin 20(+) GCDFP-15 (+)	Kiyohara et al. [13]
22	74	Male	Single-file pattern signet-ring cells	GCDFP-15 (+)	Kuno et al. [14]
23	59	Male	Single-file pattern signet-ring cells	Cytokeratin 20(-) GCDFP-15 (+)	Kuno et al. [15]
24	68	Female	Signet-ring cells	GCDFP-15 (+)	Kuno et al. [15]
25	42	Male	Pagetoid spread(+), signet-ring cells histiocytoid cells	GCDFP-15 (+)	Cameselle et al. [16]
Present case	55	Male	Signet-ring cells histiocytoid cells	Cytokeratin 7(+) GATA3 (+) AR(+) ER(-) PR(-)	

Table 2: Clinicopathological features and genetic analysis of primary signet-ring cell/histiocytoid carcinoma of the axilla

ND: Not Described

*The following references do not show immunohistochemical findings for individual cases, so the results are combined into one

Table	3:	Genetic	alterations	detected	in	axillary	signet-ring	cell/histiocytoid
carcino	oma	a.						

Case No	Age	Gender	Gene	Alteration	Reference	
			PIK3CA	E545K		
1	85	Male	TP53	E336X	Goto et al. [3]	
			TP53	E285K		
4	72	Male	PIK3CA	E545K	Goto et al. [3]	
13	71	Male	PIK3CA	E545K	lto et al. [4]	
			PIK3CA	R88Q		
Present case	55	Male	CDH1	c1570_1574		
			TP53	R110L		

antitumor effects of agents that inhibit CDK4 or CDK6 [22]. Studies have shown that PIK3CA and TP53 mutations are the most frequent mutations found in skin adnexal cancers [23,24]. The frameshift mutation of the CDH1 gene also identified in our case. Loss-of-function mutations targeting CDH1 are known to cause a lack of cell-cell cohesion, which is often associated with tumor invasion and

metastasis in several tumors [4,20,22].

Due to the rarity of this cancer, there are currently no established universal treatment guidelines. Treatment has primarily been empirically based, typically involving surgical intervention, radiation therapy when necessary, and adjuvant chemotherapy, although definitive protocols have yet to be established [3-16]. A comprehensive summary of the treatment approaches for all reported cases of axillary SRCHC is provided in Table 2.

In conclusion, our comprehensive analysis confirms the diagnosis of SRCHC in this case. Accurate diagnosis of SRCHC requires a meticulous and comprehensive evaluation encompassing clinical examination, imaging studies, and immunohistopathology. Additionally, establishing a genetic link to SRCHC remains challenging. Our report contributes valuable insights to the understanding of this rare cancer, facilitating further investigations.

References

 WHO Classification of Tumors. WHO Classification of Skin Tumors. 5th Ed. Lyon: IARC; 2023.

- Michalek IM, dos Santos FLC, Zwolinski J, Olszewski W, Gałazka A, Prochorec-Sobieszek M, et al. Signet-ring cell/histiocytoid carcinoma: Report of two cases and systematic review of the literature on the epidemiology, clinical characteristics, and pathological and molecular findings. Am J Dermatopathol. 2023;45(9):626-30.
- Goto K, Kukita Y, Honma K, Ogawa K, Nishida H, Takai T, et al. Signetring cell/histiocytoid carcinoma of the axilla: A clinicopathological and genetic analysis of 11 cases, review of the literature, and comparison with potentially related tumors. Histopathology. 2021;79(6):926-39.
- Ito Y, Ishida M, Ohe C, Miyasaka C, Tsuta K. Signet-ring cell/histiocytoid carcinoma in the axilla: A case report with genetic analysis using nextgeneration sequencing. J Cutan Pathol. 2021;48(1):102-5.
- Berdugo J, Dumont-Mackay V, Brissy-Lachery S, Leclerc YE, Doyon J, Mitchell A, et al. Cutaneous apocrine carcinoma with an *in situ* component and histiocytoid and signet-ring cells. Am J Dermatopathol. 2017;39:e76-8.
- Philips R, Langston L, Hwang H, Vandergriff T, Trynosky T, Berlingeri-Ramos AC. Primary cutaneous histiocytoid carcinoma with distant metastasis. J Cutan Pathol. 2017;44(4):376-80.
- 7. Droubi D, Zeitouni NC, Skitzki J, Bogner PN. Primary signet-ring cell carcinoma of the axilla. J Cutan Pathol. 2013;40(2):269-73.
- Ishida M, Okabe H. Primary signet-ring cell/histiocytoid carcinoma of the axilla. Pathol Int. 2013;63:374-6.
- Miyake T, Yamasaki O, Sugiu M, Hamada T, Otsuka M, Yanai H, et al. Primary signet-ring cell/histiocytoid carcinoma of the axilla expressing human epidermal growth factor receptor 2. J Dermatol. 2012;39:1038-40.
- 10. Misago N, Shinoda Y, Okawa T, Aoki S, Toda S, Koike K, et al. Histiocytoid and signet-ring cell carcinoma of the axilla: A type of cutaneous apocrine carcinoma equivalent to histiocytoid lobular carcinoma of the breast? Clin Exp Dermatol. 2011;36(8):874-7.
- 11. Pai RR, Kini JR, Achar C, Rau A, Kini H. Apocrine (cutaneous) sweat gland carcinoma of axilla with signet ring cells: A diagnostic dilemma on fine-needle aspiration cytology. Diagn Cytopathol. 2008;36(10):739-41.
- 12. Zelger BG, Stelzmueller I, Dunst KM, Zelger B. Solid apocrine carcinoma of the skin: Report of a rare adnexal neoplasm mimicking lobular breast carcinoma. J Cutan Pathol. 2008;35(3):332-6.
- Kiyohara T, Kumakiri M, Kouraba S, Tokuriki A, Ansai S. Primary cutaneous signet ring cell carcinoma expressing cytokeratin 20 immunoreactivity. J Am Acad Dermatol. 2006;54(3):532-6.

- Kuno Y, Numata T, Kanzaki T. Adenocarcinoma with signet ring cells of the axilla showing apocrine features: A case report. Am J Dermatopathol. 1999;21:37-41.
- Kuno Y, Tsuji T, Yamamoto K. Adenocarcinoma with signet ring cells of the axilla: Two case reports and review of the literature. J Dermatol. 1999;26(6):390-5.
- Cameselle-Teijeiro J, Alfonsín-Barreiro N, Allegue F, Caeiro M. Apocrine carcinoma with signet ring cells and histiocytoid features. A potentially confusing axillary tumor. Pathol Res Pract. 1997;193:713-20; discussion 721-22.
- Requena L, Prieto VG, Requena C, Jose'luis Sarasa J, Manzano R, Seco M, et al. Primary signet-ring cell/histiocytoid carcinoma of the eyelid: A clinicopathologic study of 5 cases and review of the literature. Am J Surg Pathol. 2011;35(3):378-91.
- Mortensen AL, Heegaard S, Clemmensen O, Prause JU. Signet ring cell carcinoma of the eyelid - The monocle tumor. APMIS. 2008;116(4):326-32.
- Radhi JM. Immunohistochemical analysis of pleomorphic lobular carcinoma: Higher expression of p53 and chromogranin and lower expression of ER and PgR. Histopathology. 2000;36(2):156-60.
- Ciriello G, Gatza ML, Beck AH, Wilkerson MD, Rhie SK, Pastore A, et al. Comprehensive molecular portraits of invasive lobular breast cancer. Cell. 2015;163(2):506-19.
- 21. Janku F, Wheler JJ, Westin SN, Moulder SL, Naing A, Tsimberidou AM, et al. PI3K/AKT/mTOR inhibitors in patients with breast and gynecologic malignancies harboring PIK3CA mutations. J Clin Oncol. 2012;30(8):777-82.
- 22. Patnaik A, Rosen LS, Tolaney SM, Tolcher AW, Goldman JW, Gandhi L, et al. Efficacy and safety of Abemaciclib, an inhibitor of CDK4 and CDK6, for patients with breast cancer, non–small cell lung cancer, and other solid tumors. Cancer Discov. 2016;6(7):740-53.
- 23. Libertini M, Oneda E, Di Biasi B, Savelli G, Zaniboni A. Cutaneous adnexal carcinoma with apocrine differentiation: A challenging diagnosis and personalized treatment with mTOR inhibitor in a very rare disease. Case Rep Oncol. 2020;13(3):1091-6.
- 24. Cavalieri S, Busico A, Capone I, Conca E, Dallera E, Quattrone P, et al. Identification of potentially druggable molecular alterations in skin adnexal malignancies. J Dermatol. 2019;46(6):507-14.