Acute Monocytic Leukemia Secondary to Angioimmunoblastic T-Cell Lymphoma: A Case Report and Literature Review

Chunli Y and Liqun Z1,2*
1State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, China
2Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, China

Abstract

Background: Angioimmunoblastic T-Cell Lymphoma (AITL) is an aggressive lymphoma with multi faced clinical features. However, it's rare to see secondary Acute Myeloid Leukemia (AML) during the AITL progression. We reported an AITL case proceeding to AML during the initial treatment and summarized the AML cases secondary to AITL from the literature.

Case Report: A 77-year-old woman presented with lymphadenopathies for one year; the lymph nodal biopsy and immunohistochemistry staining confirmed the AITL diagnosis without RHOAG17V and IDH2R172 mutations and excluded bone marrow infiltrated. After four courses of CHOP regimen treatment, the patient achieved a partial response. However, the bone marrow was observed the remarked increase of monoblasts, exceeding 70% of total monocytic linage, making the acute monocytic leukemia diagnosis. From the initial diagnosis of AITL to the diagnosis of AML was seven months, and the overall survival time was seven months.

Conclusion: We presented a rare AITL case, indicating that secondary AML could occur not only after but also during the treatment of AITL. Besides, as the alkylating agents and topoisomerase II inhibitors are the main drugs to treatment-related AML, exploring the new treatment regimen to avoid the therapy-related AML in AITL is warranted. Furthermore, high-throughput sequencing technology should be considered in this rare situation to better investigate the relationship between AITL and AML in the future.

Keywords: Angioimmunoblastic T-cell lymphoma; Secondary acute monocytic leukemia; Treatment; Acute myeloid leukemia; Therapy-related acute myeloid leukemia

Introduction

Angioimmunoblastic T-cell Lymphoma (AITL) is an aggressive lymphoma; generally, most patients had symptoms with fever, lymphadenopathies, anemia, rashes, and some cases with polyserous effusions and hemophagocytic lymphohistiocytosis, which leading to a poor prognosis with a 5-year OS rate of 30% under the anthracyclines-based treatment [1,2]. As the AITL is derived from Follicular T Helper (TFH) cell in the germinal center, the dysregulated function of malignant TFH affects the Tumor Microenvironment (TME), leading to the aberrance of differentiation and function of B cell in follicle [3]. In rare cases, we could see the malignant transformation of B cells in TME under the different disease stage of AITL, like diffuse large B cell lymphoma [4,5]. However, it's rare to see secondary Acute Myeloid Leukemia (AML) during the AITL progression. Here, we reported an AITL case proceeding to AML during the initial treatment and summarized the AML cases secondary to AITL from the literature.

Case Presentation

A 77-year-old woman presented with bilateral cervical enlarged lymph nodes, without any other symptom for one year. As the growth of the lymph node, the patient appeared fatigued, anorexia and dyspnea, and peripheral blood test found the decrease of the platelet. To definite diagnosis, a left cervical lymph node excision biopsy revealed diffuse hyperplasia of medium-sized atypical lymphocytes and increased small blood vessels with branches and swelling endothelium. Atypical lymphocytes were positive for CD3, CD5, CD4, Bcl-6, CXCL-13, PD-1, CD30, and Ki-67 index 60%, negative for CD20, CD8, and CD10. Polymerase Chain Reaction (PCR) and genes can found TCRG

OPEN ACCESS

*Correspondence: Zou Liqun, Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37, Guoxue Xiang, Chengdu, 610041, China, Tel: +86-28-85422683; Fax: +86-28-85423278; E-mail: hxlcxyy@163.com
Received Date: 15 Jul 2022
Accepted Date: 04 Jul 2022
Published Date: 10 Aug 2022

ISSN: 2474-1655.
Copyright © 2022 Liqun Z. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Chuili Y, et al.,

Annals of Clinical Case Reports - Medical Oncology

Table 1: Summary cases of AML secondary to AITL in literature.

<table>
<thead>
<tr>
<th>Authors</th>
<th>No.</th>
<th>Age (y), sex</th>
<th>Treatment regimen for lymphoma</th>
<th>Gene detection in AITL</th>
<th>Time to diagnosis AML (type)</th>
<th>Gene detection in AML</th>
<th>Overall survival</th>
</tr>
</thead>
<tbody>
<tr>
<td>Huang WJ [9]</td>
<td>1</td>
<td>58, F</td>
<td>CSA + Prednisone, EPOCH, R-DA-EPOCH, VP16+G-CSF, CBV+ASCIT, MTX</td>
<td>Not mentioned</td>
<td>14 months (no mentioned)</td>
<td>No MLL/ELL</td>
<td>Not mentioned</td>
</tr>
<tr>
<td>Shang Y [10]</td>
<td>3</td>
<td>65, M</td>
<td>GDPT</td>
<td>Not mentioned</td>
<td>9.5 months (AML-M3)</td>
<td>No AML1/ETO No BCR-AML No MLL rearrangement</td>
<td>20 months</td>
</tr>
<tr>
<td>70, M</td>
<td></td>
<td></td>
<td>CHOP, GDPT, CTX+ Thalidomide</td>
<td>Not mentioned</td>
<td>14 months (AML-M2)</td>
<td>No AML1/ETO No BCR-AML No MLL rearrangement</td>
<td>27 months</td>
</tr>
<tr>
<td>64, M</td>
<td></td>
<td></td>
<td>GP + radiotherapy, CTX + CSA</td>
<td>Not mentioned</td>
<td>34 months (AML-M3)</td>
<td>No PML-RARA</td>
<td>Not mentioned</td>
</tr>
<tr>
<td>Present case</td>
<td>1</td>
<td>77, F</td>
<td>CHOP</td>
<td>No RHOAG17V, No IDH2R172</td>
<td>7 months (AML-M5)</td>
<td>Not mentioned</td>
<td>Not mentioned</td>
</tr>
</tbody>
</table>

Table 1: Summary cases of AML secondary to AITL in literature.

Discussion

AITL has multifaced clinical manifestations, probably due to its complex TME. Our case presented another face in AITL development and progression. To better understand the relationship between AITL and AML, we searched the literature, found 5 AML cases secondary to AITL. For the 5 cases and the one we presented here, the median year was 64.5-years-old, the ratio of male to female 1:1. AML occurred during, after the initial treatment, in disease relapse and after ASCT. Two patients detected the gene alteration in AITL samples, found TET2 C1289Y, TET2 L1899Sfs*9, DNMT3A R771. Several examinations were performed, including plasma Epstein-Barr virus DNA (positive, less than 50 copies/mL), serum anti-nuclear antibody (positive, 1:320), serum protein electrophoresis and immune fixation electrophoresis (without monoclonal protein). We initiated treatment with CHOP (cyclophosphamide, Adriamycin, Vincristine, Prednisone) for chemotherapy and recombinant Human Granulocyte Colony Stimulating Factor (rhG-CSF) prevention for neutropenia; the patient achieved Partial Response (PR) of cyclophosphamide and Adriamycin, further FCM confirmed the diagnosis of acute monocytic leukemia in 4 patients, of which 1 patient had the same mutated gene as in AITL. The overall survival time after AML was diagnosed was very short, not exceeding 13 months.

Recently, Lewis et al. reported [6] that TET2, DNMT3A mutations in Clonal Hematopoiesis (CH) is prevalent in AITL that may give rise to both AITL and AML. Those who aged ≥ 45-years-old (HR 3.77, 95% CI, 1.395-10.191, p=0.009) or received more than eight cycles of chemotherapy (HR 3.76, 95% CI, 1.472-9.557, p=0.006) had increased risk of leukemia. Additionally, it has been reported that alkylating agents and topoisomerase II inhibitors are the main drugs to therapy-related AML, the average latency period was 5-10 years (alkylating agents) or 1 to 5 years (topoisomerase II inhibitors) [7]. Our patient presented with AML during the initial chemotherapy course. The
Figure 1: AITL patient presented with AML. A, B: The bone marrow aspirate showed increased monoblasts. C-N: The FCM analysis of leukemia cells in bone marrow, showed the monoblasts positive for HLA-DR, CD4, CD10, CD13, CD14 (partial), CD33, CD36, CD64 and CD56 (partial), CD16 (minority); negative for CD34, CD117, CD3, CD5, CD7 and CD19.
interval time was 7 months.

Conclusion

We presented a rare case of AITL, indicating that secondary AML could occur not only after but also during the treatment of AITL. The alkylating agents and topoisomerase II inhibitors are the primary drugs for treatment-related AML, exploring the new treatment regimen to avoid the treatment-related AML in AITL are warranted. Furthermore, high-throughput sequencing technology should be considered in this rare situation to better investigate the relationship between AITL and AML in the future.

Acknowledgment

We thank the relatives of the patients for allowing us to share their medical history and clinical course.

Author Contributions

Yang C and Zou L: Conception and design. Yang C: Collection and analysis of data. All authors were involved in manuscript writing, final approval of the manuscript, and accountability for work.

Funding

This work was supported by grants from the Clinical Research Incubation Project of West China Hospital, Sichuan University, China (Grant No.19HXFH053).

References