The Success of Endoscopic Stenting for Anastomotic Stricture of Hepaticojejunostomy after Pancreaticoduodenectomy in a Child with Pancreatic Injury

Fujii T1, Shimono R1*, Tanaka A1, Kubo H1, Katami H1, Yukiko W1, Suto H1, Oshima M1, Okano K1, Suzuki Y1, Yamashita T1, Kobayashi K1, Fujimori T1, Kato K1 and Kamada H1

1Department of Pediatric Surgery, Kagawa University, Japan
2Department of Gastroenterological Surgery, Seirei Mikatahara General Hospital, Japan
3Department of Gastroenterological Surgery, Kagawa University, Japan
4Department of Gastroenterology, Kagawa University, Japan

Abstract

The management of pancreaticoduodenectomy (PD) complications for pancreatic injuries in children is rarely reported. We performed PD for an 8-year-old boy with severe pancreatic injury due to a traffic accident. However, the patient suffered from anastomotic stricture of hepaticojejunostomy. We performed repeated double balloon endoscopy (DBE) dilation and stenting for the anastomotic stricture. There was no cholangitis from endoscopic stenting for 11 months following the procedures. Balloon dilation and stenting using DBE for children with anastomotic stricture of hepaticojejunostomy can be safely and usefully performed.

Keywords: Double balloon endoscopy; Anastomotic stricture; Pancreaticoduodenectomy; Pediatric; Pancreatic injury

Introduction

Management of pancreatic injury remains controversial. However, pancreatic injury with pancreatic duct disruption sometimes requires surgical treatment [1,2].

There are a few reports of pancreaticoduodenectomy (PD) in children with pancreatic injury, followed by the management of complications [3,4]. We report the efficacy of endoscopic stenting for the anastomotic stricture of hepaticojejunostomy after PD in a child.

Case Presentation

An 8-year-old boy was in a traffic accident in his family car in which he sat in the passenger seat with his seat belt fastened. At admission, a contrast-enhanced CT revealed injury of the pancreas head and transection of the pancreas body with peripancreatic fluid collection (Figure 1A). Subsequent endoscopic retrograde cholangiopancreatography (ERCP) revealed pancreatic duct disruption not only at the pancreas head with fistula to intrapancreatic bile duct, but also at pancreas body (Figure 2). We diagnosed the patient with grade V pancreatic trauma according to the American Association for the Surgery of Trauma classification [5]. We decided to perform a life-saving laparotomy, as endoscopic pancreatic stenting across the duct disruption failed. We performed subtotal stomach preserving pancreaticoduodenectomy with modified Child’s reconstruction.

The early postoperative course was uneventful. However, 8 months later, he was readmitted to our hospital with cholangitis demonstrated by his symptoms and laboratory data. Magnetic resonance cholangiopancreatography (MRCP) showed intrahepatic bile duct dilation (Figure 3), suspecting anastomotic stricture related to hepaticojejunostomy.

Double-balloon endoscopy (DBE) showed a stricture of the hepaticojejunostomy, followed by a cholangiography that showed filling defects in the distal biliary tree and dilation of the intrahepatic bile duct (Figure 4). The anastomotic stricture region was dilated using a balloon catheter and his postoperative course was uneventful. Nevertheless, he had repeated cholangitis due to recurrence...
2016 | Volume 1 | Article 1068

of the anastomotic stricture in spite of the dilation of the anastomosis twice. At the third dilation, two 7-Fr biliary stents were introduced through the DBE into the right and left hepatic branch to avoid recurrent stenosis (left lobe of liver: 3 cm, right lobe of liver: 5 cm). Four months later, we were scheduled to exchange the biliary stents. There was no cholangitis from endoscopic stenting for 11 months.

Discussion

Pancreatic injury itself is generally rare in children; moreover, it accounts for less than 10% of blunt abdominal injuries [6]. Nonsurgical management is commonly selected for minor pancreatic injury. However, some authors have suggested that operative management reduces complications and reduces the length of hospital admission in cases where the main pancreatic duct has also been damaged [1,2]. Therefore, it is important to assess the status of the pancreatic duct in determining the management of pancreatic injuries. Moreover, complex pancreatic head injury sometimes requires PD [7].

The complication rate of after PD in adult cases has been reported as 40% or more, while the incidence of postoperative biliary strictures after PD in adult cases is reported to be 2.6% [8,9]. However even in adult cases, surgical intervention for patients with bilio-enteric anastomotic strictures is difficult and it has a high morbidity rate of 25%, and a mortality rate of 2–13% [10,11]. On the other hand, balloon dilation and stent insertion for patients with bilio-enteric anastomotic strictures were considered effective and less invasive compared with surgical intervention [12].

There are two access routes to anastomotic strictures: DBE and the percutaneous trans-hepatic approach. The success rates of percutaneous trans-hepatic biliary intervention (PTBI) are reported to be 52.3%–81%, with morbidity rates of 4%–38.1%, including conditions such as hemorrhage, cholangitis, and cholestasis [12-14]. In contrast, the success rates of DBE are reported to be 80%–94%, with morbidity rates of 0%–0.7%, including conditions such as pancreatitis and peri-procedural bacteremia [15,16]. Consequently, DBE is preferred to PTBI because of its less invasive nature, better success rates, and reduced morbidity.

Recently, along with advances of endoscopic techniques, DBE has become possible to be performed safely, even for small children. Sanada et al. proposed that DBE should be performed to the patients over 15.0 kg of body weight [17], although there is a report that DBE was safely performed on a 1-year-old patient [18]. In conclusion, balloon dilation and stenting using DBE for children with anastomotic stricture of hepaticojejunostomy can be safely and usefully performed.

References

